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Abstract. The method proposed by the present authors to deal analytically with the problem of Anderson
localization via disorder [J. Phys.: Condens. Matter 14, 13777 (2002)] is generalized for higher spatial
dimensionsD. In this way the generalized Lyapunov exponents for diagonal correlators of the wave function,
〈ψ2

n,m〉, can be calculated analytically and exactly. This permits to determine the phase diagram of the
system. For all dimensions D > 2 one finds intervals in the energy and the disorder where extended
and localized states coexist: the metal-insulator transition should thus be interpreted as a first-order
transition. The qualitative differences permit to group the systems into two classes: low-dimensional systems
(2 ≤ D ≤ 3), where localized states are always exponentially localized and high-dimensional systems (D ≥
Dc = 4), where states with non-exponential localization are also formed. The value of the upper critical
dimension is found to be D0 = 6 for the Anderson localization problem; this value is also characteristic of
a related problem – percolation.

PACS. 72.15.Rn Localization effects (Anderson or weak localization) – 71.30.+h Metal-insulator
transitions and other electronic transitions

1 Introduction

1.1 Experiment and theory

Disorder leads to important physical effects which are of
quantum mechanical origin. This has been revealed by
Anderson [1] in the study of a disordered tight-binding
model. This problem has attracted great attention over
many decades. A breakthrough came with the scaling the-
ory of localization [2]. All states in a one-dimensional sys-
tem (1-D) are localized, whereas in 3-D a metal-insulator
transition occurs. An analytic solution is only known for
the 1-D problem [3]. Although there was no general ana-
lytical solution available, there was consensus that in 2-D
all states are localized.

For quite some time after the advent of the scaling the-
ory, many believed it to be essentially under control. This
view is less secure nowadays, in part because recent exper-
iments have challenged conventional wisdom about disor-
dered 2-D systems. The 2-D case still presents a problem
which has become apparent by experiments [4–7]. These
experiments are still being discussed controversially. Ex-
perimental reality is certainly more complex than a simple
tight-binding model, but these results provide a good rea-
son for revisiting this classic theoretical problem.
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Recently we have been able to solve the 2-D case ana-
lytically [8]. We have shown that in principle there is the
possibility that the phase of delocalized states exists for
a non-interacting electron system. For energies and disor-
der, where extended states may exist we find a coexistence
of these localized and extended states. Thus the Anderson
metal-insulator transition exists and should be regarded
as a first order phase transition. Consequently we have
returned to the old idea of Mott [9,10] that the metal-
insulator transition is discontinuous. This alternative idea
was in its history completely abandoned with the advent
of the scaling theory of localization. Thus we expect a
renaissance of it.

This result implies the failure of the scaling theory of
Anderson localization. Although this paper is published [8]
and constitutes the basis for a new analytical investiga-
tion of the Anderson problem in the present paper for
the case of higher dimensions (N-D problem) one has to
accept the following: (i) the paper [8] requires an inde-
pendent confirmation, which requires a certain time; (ii)
in the history of the problem one has developed quite a
few conceptions and this leads to a critical attitude to-
wards the new theory – i.e. there is a resistance – as it
departs from conventional wisdom. This asks for a critical
evaluation of the new theory and its results [11,12]. One
should acknowledge that the problem is many-sided and
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quite complex. Thus logical errors are possible which do
not lie at the surface. Perhaps a reference to B. Pascal
is appropriate here: A truth is so delicate that any small
deviation from it leads you to a mistake, but this mistake
is also so delicate that after a small retreat you find your-
selves in a truth again. Without an exact analytic solution
a discussion cannot lead to firm results.

Let us add at this point some reflections of a historical
nature. It is well known that exact results in the field of
phase transitions are exceedingly rare (so to say they are
exceptions) and they exist only under certain conditions
and limitations. The situation in the field of Anderson lo-
calization shows in this respect a certain similarity to the
history of the theory of the second order phase transitions
and of the Ising model. The phenomenological theoretical
work by Landau [13] and the numerical work by Bethe [14]
were prior to Onsager’s analytical theory [15] and they
were well accepted. But the results of the analytical theory
departed strongly from the phenomenological and numer-
ical results in that it gave different critical exponents. But
there are limitations to the analytical theory. The exact
solution of Onsager for the Ising model is only possible
for 2-D, without magnetic field and only for the case of
an interaction between nearest neighbours. This is also
the case in our present investigation. An exact solution
is only possible (a) for the tight-binding approximation
with (b) diagonal disorder, where (c) on-site potentials
are independently and identically distributed, i.e. for the
conventional Anderson model.

A contradiction between results from phenomenolog-
ical theories (Landau, scaling theory) and analytical re-
sults (Onsager, the present work) have (Onsager) or might
(the present case) lead to scientific advances. The metal-
insulator transition is a phase transition. In the case of
such phase-transitions the results tend to be unstable and
depend on the approximations. An exact solution thus
rarely shows an agreement with results from a phenomeno-
logical theory and numerical work, because the two latter
methods make use of additional approximations and as-
sumptions, whose consequences are hardly controllable.
To return to the advances made possible by Onsager’s an-
alytical theory: Ginzburg got in the year 2003 the nobel
prize for the work (together with Landau [16]), in which he
used the phenomenological theory of second order phase
transitions. This all means simply that phenomenological
and numerical results frequently require certain correc-
tions, which is only then possible, when an exact solution
is known.

The main aim of the present article is thus the general-
ization of the mathematical tools of the previous article [8]
to the case of higher dimensional spaces and a physical in-
terpretation of the new results.

1.2 Structure of the present article

The outline of the present article is a follows. The
article [8] opens the possibility to determine the phase
diagram of the multi-dimensional Anderson localization
analytically. This is based on the analytic calculation

of Lyapunov exponents. The argumentation is given at
the beginning of Section 2 in detail. There we also give
a short derivation of the equations for the N-D Ander-
son localization problem, and a necessary summary of
the results of the article [8]. The connection between the
Anderson localization problem and signal theory is dis-
cussed and the most important concept of the proposed
method – the filter H(z) – is defined. To understand fully
these aspects of the theory a knowledge of the first pa-
per [8] is recommended. The filter H(z) is generalized for
higher dimensions D of the space. The investigation of its
properties and the corresponding physical interpretation
constitute the content of several chapters. The theory for
high-dimensional systems (D ≥ 4) is presented in Sec-
tion 3, whereas the theory for low-dimensional systems is
given in Section 4. An appendix deals with the mathe-
matical conditions for the physical interpretation of the
filter H(z) and a more detailed discussion of related as-
pects of the problem. Because of the length of the present
article we omit both the mathematical details of the the-
ory as well as an extended discussion of the implications
of the results. This will be given in a future publication,
where also a different procedure for part of the derivation
is used instead of an average over initial conditions as done
here.

2 New methods

2.1 Anderson localization and generalized diffusion

Recently we have been able to solve the 2-D case analyt-
ically [8]. The tight-binding equation in 2-D is solved for
the wave function ψn,m and the second moments (diagonal
correlators 〈ψ2

n,m〉):

ψn+1,m = (E − εn,m)ψn,m − ψn−1,m −
∑

m′
ψn,m+m′ , (1)

where the summation over m′ runs over the nearest neigh-
bours of site (n,m) in layer n that is in a space of dimen-
sion p = D−1 = 1. We assume taking the limit to infinite
size L → ∞ in p-space. The equation is solved with an
initial condition

ψ0,m = 0, ψ1,m = αm. (2)

The on-site potentials εn,m are independently and iden-
tically distributed with existing first two moments,
〈εn,m〉 = 0 and

〈
ε2n,m

〉
= σ2.

The mathematical idea shortly discussed above is
based on a simple physical idea. The aim of the article [8]
consisted in determining a phase diagram for the Anderson
localization problem. To this purpose the concept of the
Lyapunov exponent γ [8] is extremely well suited. The
Lyapunov exponent plays the role of an order parameter:
γ ≡ 0 for the metallic phase and γ �= 0 for the insulating
phase. The value γ �= 0 for the insulating phase implies
a divergence of certain mean values as a function of the
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index n. If we understand what this divergence means it
will become clear, which quantities have to be calculated.

This divergence is a general property of a number of
different stochastic systems. To give a clear picture we
consider in the following the equations for 1-D systems
and in particular for diffusion (random walks)

ψn+1 = ψn + εn, (3)

and Anderson localization

ψn+1 = (E − εn)ψn − ψn−1. (4)

For symmetric diffusion, 〈εn〉 = 0,
〈
ε2n

〉
= σ2, the simplest

and most important characteristic is the second moment〈
ψ2

n

〉
= ψ2

0 +σ2n. A divergence of this variable for n→ ∞
is an unambiguous proof for the existence of diffusion. It is
also analytically possible to calculate other even moments,
e.g.

〈
ψ4

n

〉
. These, however, do not supply new information.

All even moments diverge simultaneously, and they do this
as a power of n. A similar divergence also occurs for other
mean values of the functions of |ψn|, e.g. 〈|ψn|〉; however,
these can only be calculated numerically. In other words,
for the determination of the existence of diffusion it is
fully sufficient to calculate only one moment, the second
moment.

The equation (4) is nothing else but a generalization
of equation (3). The mean value

〈
ψ2

n

〉
= f(n) describes

in this case generalized diffusion. If f(n) is bounded,
f(n) < ∞, then the proper dynamics in equation (4)
is stable and we have no diffusion (Lyapunov exponent
γ ≡ 0). This corresponds in a physical interpretation to
the existence of delocalized states. A divergence of the
function f(n) for n → ∞ corresponds to generalized dif-
fusion (localized states); in this case one could distinguish
in addition between non-exponential localization (f(n) is
a non-exponential function) and exponential localization
(f(n) ∝ exp(2γn) with γ �= 0).

It is quite important to stress here that the forma-
tion of diffusion in a dynamic system represents always
a type of phase transition. Therefore one can easily find
the corresponding critical values and determine the phase
diagram of the system. As for proper diffusion, an ana-
lytic calculation for equation (4) is only possible for even
moments [3,8].

For these reasons it is fully sufficient to consider only
the equations for the second moments (correlators) to de-
termine the phase diagram of the system [8]. This idea
has a certain similarity to the method of Pendry [17].
Pendry has introduced the density matrix to the prob-
lem of waves in disordered systems. However, he was of
the opinion (without giving a proof), that for Anderson
localization all higher-order density matrices and hence
all higher moments need to be considered. This program
is practically unfeasible, so Pendry limited himself in [17]
to the second moment. Instead of solving the equations
for the second moments exactly Pendry has mainly stud-
ied the properties of the transfer matrix and the process
of its diagonalization. For the transfer matrix, however,
the investigation of the thermodynamic limit is impossi-

ble (see discussion in [12]), and consequently in this way
the phase diagram of the system cannot be obtained.

2.2 Equations for correlators

In the present paper we present the analytic solution for
the general case D > 2. The knowledge of paper [8] is pre-
requisite for understanding the present one as it contains
the full formalism. The generalization of this formalism to
the N-D case presents no problem (see below). The main
equations (1), (2) remain valid, only scalar quantities be-
come vector quantities.

The tight-binding equation in 1 + p dimension is
(primed indices are summed)

ψn+1,m = −εn,mψn,m − ψn−1,m + Lm,m′ψn,m′ , (5)

Lm,m′ = Eδm,m′ −
∑

m′′
δm+m′′,m′ , (6)

(summation over m′′ runs over the nearest neighbours)
with initial condition ψ0,m = 0 and ψ1,m = αm.

One introduces the correlators (the averages are taken
over disorder)

x(n)m,l = 〈ψn,mψn,l〉 , (7)
y(n)m,l = 〈ψn,mψn−1,l〉 . (8)

From the equation (5) one easily obtains the system of
equations:

x(n+ 1)m,l = δm,lσ
2x(n)m,l + x(n− 1)m,l

+ Lm,m′x(n)m′,l′Ll′,l − Lm,m′y(n)m′,l − Ll,l′y(n)l′,m,
(9)

y(n+ 1)m,l = −y(n)l,m + Lm,m′x(n)m′,l. (10)

They can be solved explicitly by introducing the
Z-transform [18]

X(z)m,l =
∞∑

n=0

x(n)m,l

zn
, (11)

Y (z)m,l =
∞∑

n=0

y(n)m,l

zn
, (12)

which turn the equations into

(z − z−1 − σ2δm,l)X(z)m,l − x(1)m,l =
Lm,m′X(z)m′,l′Ll′,l − Lm,m′Y (z)m′,l − Ll,l′Y (z)l′,m,

(13)

zY (z)m,l = −Y (z)l,m + Lm,m′X(z)m′,l. (14)

Iteration of the second equation yields

Y (z)m,l =
z

z2 − 1
Lm,m′X(z)m′,l − 1

z2 − 1
X(z)m,l′Ll′,l.

(15)
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We then obtain an equation for X(z)m,l only, which can
be solved by double Fourier expansion. A complete pre-
sentation of the method is rather lengthy and will thus be
the subject of a following paper. A shortcut which quickly
leads to the correct equations is suggested in Section 3.2
of [8]): averaging over translations in p-space of boundary
conditions, αm.

Upon averaging over an ensemble of initial conditions
(as described in [8]) such that αmαm′ = Γm−m′ , the prob-
lem is translation-invariant in transverse directions. We
then put:

X(z)m,l =
∫

dpk
(2π)p

X(z,k)eik(m−l). (16)

After averaging over initial conditions the diagonal corre-
lator becomes independent of m:

x(n)m,m ≡ xn, (17)

X(z)m,m ≡ X(z) =
∫

dpk
(2π)p

X(z,k). (18)

We obtain the final equations

(z − 1)
(z + 1)

[w2 − E2(k)]X(z,k) = Γ (k) + σ2X(z), (19)

E(k) = E − 2
p∑

j=1

cos(kj), (20)

w2 =
(z + 1)2

z
, (21)

or

X(z) = H(z)X(0)(z), (22)

X(0)(z) =
(z + 1)
(z − 1)

∫
dpk

(2π)p

Γ (k)
[w2 − E2(k)]

, (23)

1
H(z)

= 1 − σ2 (z + 1)
(z − 1)

∫
dpk

(2π)p

1
[w2 − E2(k)]

, (24)

where the X(0)(z) (or x(0)
n ) refer to the ordered system

(σ ≡ 0) and the X(z) (or xn) to the disordered one
(σ �= 0). For equation (22) the inverse Z-transform gives
the convolution property [18]:

xn =
n∑

l=0

x
(0)
l hn−l, (25)

with

H(z) =
∞∑

n=0

hn

zn
. (26)

2.3 Anderson localization and signal theory

The essential point in the analysis with respect to the
localized or extended character of the states is to make

use of signal theory [18] from electrical engineering and
switch from an investigation of the moments xn to an
analysis of the filter functions hn.

In the theory of signals [18], x(0)
n (or X(0)(z)) is the

input signal, and xn (or X(z)) is the output. Asymptotic
behaviour of the solution is completely determined by the
filter hn (or H(z)). The concept of the system function
is a general and abstract description of the problem of
localization. Thus the filter function has to be analysed
to obtain general results and not the multitude of signals.
This has been done in [8] for the 2-D case. This procedure
has a certain similarity with the transition to an operator
formalism in quantum mechanics. Particular signals xn

depend on the initial conditions used and do not carry
much physical information because of the unconventional
normalization [8]. For the localization problem the only
property that matters is whether a signal belongs to the
bounded or unbounded class and this can be derived from
the filter.

The essence of localization is contained in the fil-
ter H(z). We study the filter H(z) with properties de-
scribed by generalized Lyapunov exponents [8,19]. The
filter is a fundamental function of the disorder σ only.

A filter hn is uniquely characterized by a pole-zero di-
agram of its image H(z) which is a plot of the locations
of the poles λi and zeros of H(z) in the complex-z plane.
We provide just a brief summary here, for more details
consult [8,18]. The signals x(0)

n and xn are real, there-
fore H(z) will have poles and zeros that are either on the
real axis, or come in conjugate pairs. For the inverse Z-
transform H(z) ⇒ hn one needs to know the region of
convergence (ROC). Physical considerations dictate that
only causal filters (hn = 0 for n < 0) should be consid-
ered. They have ROCs outside a circle that intersects the
pole with max |λi|. A causal filter is stable (bounded in-
put yields a bounded output) if the unit circle |z| = 1
is in the ROC. Note that the explicit calculation of hn

by the inverse Z-transform is not necessary, and it is also
not feasible analytically due to the complexity of the func-
tionH(z). Only the type of the filter – stable or unstable –
needs to be determined. The delocalized states (bounded
output) are obtained by transforming the physical solu-
tions inside the band (bounded input) provided that the
filter H(z) is stable. Seeking for poles is quite a simple
analytical task which gives rather general results by ele-
mentary methods.

As an example for the general and abstract descrip-
tion of the problem of localization as stated above let us
consider the following problem. It is well-known that dis-
orders broadens the band; new states outside the old band
arise for |E| > Eb = 2D. Are among these new states also
extended states? Numerical work for D = 3 [20,21] as-
certains this. This is the socalled reentrant behaviour of
the mobility edge: the change from localized to extended
states and back to localized ones upon increasing the dis-
order occurs for certain fixed energies. Because in the liter-
ature there is no physical explanation for this phenomenon
one has simply accepted these results without critically
examining them.
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With the help of signal theory we have found a par-
ticular transformation, which gives a connection between
the states in an ideal system (zero disorder) and states in
a system with disorder. Extended states (zero disorder)
as input (bounded) signal transform into localized states
(nonzero disorder) as output (unbounded) signal if the fil-
ter which is responsible for this transformation is unstable.
If the filter is stable, then extended states (bounded in-
put signal) transform into extended states (bounded out-
put signal). It is known that for zero disorder outside the
band, |E| > Eb, there do exist only mathematical solu-
tions which cannot be normalized. These correspond to
an unbounded input signal. It is impossible to find a fil-
ter which permits a transformation of the unbounded in-
put signal (mathematical solution) into a bounded output
signal (extended states in |E| > Eb). The reverse – the
transformation of an unbounded input signal (mathemat-
ical solution) into a unbounded output signal (localized
states in |E| > Eb) – is on the other hand possible. I.e.
the mathematical procedure developed by us generates in
this case a negative answer to the posed question.

We have shown in [8] that the filter H(z) is a non-
analytic function of the complex variable z; this result
remains valid also in the multi-dimensional case. The unit
circle |z| = 1 divides the complex plane into two analytic
domains: the interior and exterior of the unit circle. The
inverse Z-transform is quite generally defined via contour
integrals in the complex plane

hn =
1

2πi

∮
H(z)zn dz

z
. (27)

and this definition is only possible in an analytic do-
main. In this way in the formal analysis of the problem
multiple solutions result. The first solution H+(z) is de-
fined outside the unit circle and always exists. The fil-
ter H+(z) describes localized states and it is possible to
connect its properties with the notion of the localization
length [8]. The second solution H−(z) is defined inside the
unit circle and does not always represent a solution which
can be physically interpreted (this is the mathematical
consequence that the filter be causal). The filter H−(z)
describes delocalized states. The coexistence of the two
solutions was physically interpreted in [8,12] as the coex-
istence of two phases – an insulating and a metallic one.
Then the metal-insulator transition should be looked at
from the basis of first-order phase transition theory.

2.4 Conformal mapping

The p-dimensional integral on the r.h.s. of equation (24)
can be reduced to a one-dimensional integral. Consider
the identity

1
w2 − E2(k)

=
∫ ∞

−∞

δ
(
y +

∑p
j=1 2 cos(kj)

)
dy

w2 − (E + y)2
. (28)

The integral representation of the Dirac δ-function and
the Bessel function

J0(x) =
1
2π

∫ π

−π

eix cos(k)dk (29)

will be used. Following [8], let us define a complex pa-
rameter w = u+ iv from equation (21) in the upper half-
plane, v ≥ 0. Using the methods of complex variable the-
ory we get

1
(2π)p

∫
dk

w2 − E2(k)
=

1
iw
YD(w,E), (30)

where

YD(w,E) =
∫ ∞

0

[J0(2t)]
D−1 cos(Et) exp(iwt) dt. (31)

Changing the complex variable z to the parameter w
corresponds to the conformal mapping of the inner part
[|z| ≤ 1, w = −(z1/2 + z−1/2))] or the outer part [|z| ≥ 1,
w = (z1/2+z−1/2)] of the circle onto the upper half-plane.
The circle itself maps onto the interval [−2, 2]. Note also
that if H(z) = 0 has complex conjugate poles, then on
the upper w half-plane they differ only by the sign of u.
To avoid complicated notations, we seek for poles in the
sector u ≥ 0, v ≥ 0 and double their number if we find any.

The inverse function [8]

z = −1 +
w2

2
± w

2

√
w2 − 4 (32)

is double-valued. Its branch with the minus sign maps
the w sector onto the inner part of the half-circle (|z| ≤ 1).
The second branch with the plus sign gives a mapping
onto the half-plane with the half-circle excluded (|z| ≥ 1).
Therefore in the parametric w-representation

z + 1
z − 1

= ± w√
w2 − 4

(33)

and
1

H±(z)
= 1 ± σ2i

YD(w,E)√
w2 − 4

. (34)

3 High-dimensional systems

3.1 Upper critical dimension

It is generally assumed that 2-D systems mark the border-
line between high and low dimension [22]. The existence
of a transition in 3-D is not questioned (high-dimensional
systems). These assumptions, however, originate from the
scaling theory of localization. Here the marginal dimen-
sion is DM = 2, and a phase transition exists only for
D > DM . Thus perturbation theory [4] for D = 2 + ε
(ε � 1) is possible. The effect of statistical fluctuations
cause a change of regime at Dc = 4 [10,23]; in this way
the upper critical dimension for localizationDc arises. For
D > Dc there should not exist a phase transition.
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On the one hand these statements referring to higher
dimensions are numerically nearly impossible to ascer-
tain [24]. Statistics is bad and the length of the system L
very small. Even for D = 3 progress towards extracting
reliable numerical estimates of critical quantities has been
remarkably difficult [25]. On the other hand, if the results
from the scaling theory of localization for 2-D systems are
faulty (this is what we claim), then the corresponding di-
vision of the systems into low and high dimensional ones is
also wrong. Here one must develop an alternative picture.

In the theory of critical phenomena [26,27] many sys-
tems belong to a class, where an upper critical dimen-
sionD0 has a totally different physical meaning. It denotes
the dimension, from where on the mean field approxima-
tion is exact, or where with other words all critical expo-
nents reach stationary values. I.e. in this case the phase
transition does exist also for D > D0; only in the limit
D → ∞ the transition disappears, simply because the
corresponding critical values have gone to infinity. Sys-
tems of quite different physical nature may have the same
value of the upper critical dimension D0. E.g. one finds
D0 = 4 not only for the theory of magnetism [26,27] (in
this case there exists also the marginal dimension, below
which no phase transition is possible), but also in kinet-
ics (cooperative phenomena in bimolecular processes by
diffusion-controlled reactions) [28,29]; in the latter case,
however, there is no marginal dimension. Another exam-
ple is percolation, where the upper critical dimension is
D0 = 6 [30].

3.2 Stability and poles: solution H+(z)

Let us start first from a purely mathematical comment:
the integral YD(w,E) is always finite for all w = u + iv
in the sector u ≥ 0, v ≥ 0 for high-dimensional systems
with D ≥ 4. This fact clearly follows from the asymptotic
behaviour of the Bessel function for large values of its
argument, J0(2t) ≈ 1√

πt
cos(2t − π/4). We shall further

on see that the dimensionality D = Dc = 4 is critical
for localization, although this is no proper upper critical
dimension D = D0, which we shall determine below. Let
us consider therefore the properties of the filter-functions
in this region of the value of the dimension of space.

Let us consider first the solution H+(z). According
to [18], the ROC of the causal filter is defined by the in-
equality |z| > max |λi|, where λi are the poles. The case
when the system function has a pole at z = λ > 1 is
the simplest one for an interpretation. In terms of signal
theory [18] the filter H+(z) is unstable since the pole lies
outside the unit circle |z| = 1 in the complex z-plane. As
shown in [8], such a filter describes exponentially local-
ized states (insulating phase). In order to see this one can
exploit a basic inverse Z-transform [18]:

H(z) = z/(z − λ) ⇒ hn = λn. (35)

Therefore the pole of H+(z) at z = λ = exp(2γ) leads
to exponential growth of the system function hn which in
turn implies [Eq. (25)] an exponentially increasing mean

squared amplitude xn. The growth exponent γ is the so-
called generalized Lyapunov exponent [3] related to the
localization length by ξ = γ−1.

The value of the Lyapunov exponent γ defines the
phase. We start from the mathematical definition that all
states with γ �= 0 belong to the insulating phase. The
states with γ ≡ 0 on the other hand correspond to a
metal. According to this definition the states with non-
exponential localization also belong to the metallic phase,
because they correspond to the value γ ≡ 0. We can con-
sider these states as a bad metal, in contrast to a good
metal, where one has truly delocalized states.

We would like to give here a summary of the results
which emerge from an analysis of the pole diagram (for
details see the Appendix). The function YD(w,E) defined
by equation (31) is purely imaginary for v = 0, u > u0,

u0 = 2p+ |E|, (36)

and the system functionH+(z) itself is real. The pole must
be located (if present at all) exactly in this region of the
parameter w. It can be found as a solution of an in general
transcendental equation

σ2Ω+(u) = 1, (37)

where

Ω+(u) =
1√

u2 − 4

∫ ∞

0

[J0(2t)]
D−1 cos(Et) sin(ut)dt.

(38)
For high-dimensional systems with D ≥ 4 the func-
tionΩ+(u) has a maximum at u = u0 and decreases mono-
tonically for u > u0. The system function has a pole if the
disorder exceeds a critical value, σ > σ0(E), where

σ0(E) = Ω+(u0)
−1/2. (39)

Therefore, in high-dimensional systems exponential local-
ization takes place only if the disorder is strong enough.

For σ < σ0(E) the function H+(z) has no poles,
its ROC its |z| ≥ 1. This means that the unit circle |z| = 1
belongs to the ROC, and the filter is stable.

We interpret solutions for this range of the disorder
values, σ, also as localized, however with non-exponential
localization. Non-exponential localization corresponds to
a Lyapunov exponent γ = 0. This simply means that
the corresponding function grows slower than the expo-
nent exp(2γn). To this class of functions do not only
belong power-law functions, but also exponents with a dif-
ferent argument, e.g. exp(c · nδ) with δ < 1. Here we en-
counter limits of applicability of the method, which come
into play, however, only in physically inaccessible systems
of high dimensionality. The elementary pole search can be
applied only for exponentially localized states, the gen-
eral case requires a detailed investigation of the filter. In
its present form our theory is not capable to determine
the type of non-exponential localization.

The curve for σ0(E) (Fig. 1a) is the well-known mo-
bility edge. For σ > σ0(E) there exists an insulating
phase, whereas for σ < σ0(E) a metallic phase is found
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Fig. 1. Threshold disorder values: (a) σ0(E) for the transi-
tion from the non-exponential to the exponential localization
and (b) σ′

0(E) for the transition from the delocalized to the
(non-exponentially) localized states. The curves are enumer-
ated with the values of D.

(bad metal). A coexistence of phases is here not possible.
Thus the phase transition here has an appearance as if it
were a transition of second order. This simple idea, how-
ever, is contradicted by the behaviour of the Lyapunov
exponent: the transition from γ ≡ 0 to γ �= 0 is not con-
tinuous. One can clearly see that all these mobility edges
for high-dimensional systems show the same qualitative
behaviour.

3.3 Stability and poles: solution H−(z)

Now let us turn to the second branch of the solution,
H−(z). In this case existence of the poles leads to princi-
pally different consequences. Let us assume that the cor-
responding value of the parameter w is found and the
pole z = λ1 is located inside the unit circle, |λ1| =
1/λ with λ > 1. Formally, however, from the definition
w = −(z1/2 + z−1/2) the same value of w can be obtained
for z = λ2 = 1/λ1 = λ. The complex number λ2 lies
outside the region of definition of the solution, |z| ≤ 1.
In this sense the pole at z = λ2 is virtual. For the inverse
Z-transform this fact is, however, irrelevant. The ROC for
a causal filter is defined by the inequality |z| > max |λi| or

|z| > λ > 1. Since the ROC and the region of definition of
the solution |z| ≤ 1 do not intersect, a physical solution is
absent. Therefore, the filter H−(z) as a physical solution
is acceptable only if either there are no poles or they lie on
the unit circle. The latter case is realized for D = 2 [8] and
corresponds to so called marginal stability [18]. In the fol-
lowing, we consider the general case D ≥ 4 from a unified
point of view.

A pole of the first type is related to the singularity of
the function equation (34) at w = 2 (the root, for details
see the Appendix). We define the phase and amplitude via
the integral (31)

YD(w,E) = ID(w,E) exp(iϑD(w,E)). (40)

It is not difficult to show that this pole emerges at arbitrar-
ily small disorder for a negative phase ϑD(2, E) < 0. The
equation ϑD(2, E0) = 0 defines the boundary of the re-
gion |E| > E0, where the physical solution is absent and,
therefore, any disorder transforms the delocalized states
into localized ones. For high-dimensional systems the de-
localized states transform into states with non-exponential
localization. The corresponding E0 values are E0 = 3.915
(D = 4), E0 = 4.365 (D = 5) and E0 = 4.578 (D = 6).

For the region |E| < E0 there exists the physical solu-
tion with σ < σ′

0(E), where σ′
0(E) is a second thresh-

old disorder value. The behaviour of this curve σ′
0(E)

(Fig. 1b) is determined by resonance phenomena. The in-
tegral in (31) consists asymptotically of a power function,
t(D−1)/2, and a product of trigonometric functions. E.g.
the function cos(2t− π/4) comes from every Bessel func-
tion. If we represent this product as a sum of monochro-
matic waves, then we denote the existence of a wave with
zero frequency as a resonance. For w = 0 the first non-
trivial resonance lies either at Ec = 2 (D = 4, 6, ...) or at
Ec = 4 (D = 5, 7, ...).

For |E| < Ec a pole of the second type appearing at
higher levels of disorder σ > σ′

0(E) must be considered.
This type of pole emerges at purely imaginary values of
the parameter w = iv. It corresponds to the roots of the
equation

σ2Ω−(v) = 1, (41)

where

Ω−(v) =
1√

4 + v2

∫ ∞

0

[J0(2t)]
D−1 cos(Et) exp(−vt)dt.

(42)
A physical solution is acceptable here only if the poles lie
on the unit circle, |z| = 1 or w ∈ [0, 2] for our sector w. A
marginally stable solution corresponds to the value w = 0
(or v = 0 in Eq. (42)). The threshold disorder value is
given by

σ′
0(E) = Ω−(0)−1/2

. (43)

For σ < σ′
0(E) the function H−(z) does not possess poles,

here we find the region of stability of the extended states.
Spaces of dimension D = 4, 5 possess a certain sensi-

tivity with respect to the resonance phenomena mentioned
above. For Ec < |E| < E0 the line of the poles exhibits
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a deviation from purely imaginary values of the parame-
ter w and touches the real axis at the point u′ ∈ [0, 2].
This point corresponds to the condition for the phase of
the integral ϑD(u′, E) = 0 and also belongs to the unit
circle (marginal stability). The corresponding threshold
disorder value we denote again as σ′

0(E):

σ′
0(E) =

(√
4 − u′2

ID(u′, E)

)1/2

. (44)

We see that the function σ′
0(E) is in general singular in the

energy. In going from the energy value Ec to the value E0

the parameter u′ increases monotonically and reaches fi-
nally the value u′ = 2. The function σ′

0(E) goes continu-
ously to zero for |E| → E0.

For dimensions D ≥ 6 there are no resonance phenom-
ena. These resonances are so weak that only one equa-
tion (43) remains valid in the whole range of energies
|E| < E0. I.e. although Dc = 4 is a certain critical dimen-
sion (here non-exponential localization arises), a qualita-
tive agreement of all results is only obtained for D ≥ 6.

In this way it emerges from our exact analytic theory
that for Anderson localization the upper critical dimension
is D0 = 6, i.e. the problem in a certain way shows a simi-
larity to percolation [30] – and this may not be totally un-
expected. However, we also note that as a rough estimate
for the upper critical dimension the value Dc = 4 may
also be accepted. It corresponds to a first and important
step of the qualitative saturation of the results (the pos-
sibility of existence of non-exponentially localized states),
whereas a complete saturation only obtains at D = 6.

Quite generally in the range |E| < E0 and under the
condition σ < σ′

0(E) there exists a region of existence of
stable delocalized states. Because in this range also non-
localized states coexist with the other ones, this means
that in this range the good metal (delocalized states)
and the bad metal (non-exponentially localized states)
can form a heterogeneous system, whose properties de-
pend on the relative proportions of the subsystems; e.g.
the bad metal, if the subsystem of non-exponentially lo-
calized states percolates. Figure 1 presents results of a
numerical solution of the resulting equations.

4 Low-dimensional systems

4.1 Analytic solution

Independently from whether Dc = 4 or D0 = 6 are taken
as the upper critical dimension, it is necessary to con-
sider 3-D systems as low dimensional ones. We approach
here a widely held opinion that all states in D = 3 should
be stable against perturbations and should have a finite
radius of convergence. This, however, is not correct and
would only be valid if the whole field of the scaling theory
of localization would be faultless.

Equation (37) has always a solution for the physically
important cases D = 2, 3. We refer to these cases as ‘low-
dimensional’ ones. For the low-dimensional systems the
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Fig. 2. Threshold disorder values: (a) σ0(E) for the transi-
tion from the non-exponential to the exponential localization
and (b) σ′

0(E) for the transition from the delocalized to the lo-
calized states. The curves are enumerated with the values of D.
The curves 3′ and 3′′ correspond to the model equation (45)
for κ = 0.01 and κ = 0.1.

integral equation (38) can be evaluated analytically (the
formulas can be found in the tables of Laplace transforms).
The corresponding pole diagrams are shown graphically
in the Appendix. The system function has a pole at
z = λ = exp(2γ) with γ > γ0, 2 cosh(γ0) = u0 = 2p+ |E|
and p = D − 1. Note, however, that the above mentioned
feature of the low-dimensional systems is caused by the
divergence of the integral Ω+(u0).

If one applies the obtained equations (43) for σ0(E)
to low-dimensional systems with D = 2, 3, then formally
σ0(E) ≡ 0. Therefore, even infinitesimal disorder leads
to solutions with exponential localization. Because the
curve σ0(E) forms the border between exponentially lo-
calized and non-exponentially localized states, this simply
means that in this model for low-dimensional systems non-
exponentially localized states are impossible (see, how-
ever, a discussion below).

For such systems the second curve σ′
0(E) takes over the

role of the mobility edge. The shape of this curve (Fig. 2b)
for low-dimensional systems has a certain similarity with
the ones for high-dimensional systems. Here we must stress
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that σ′
0(E) does not represent a true mobility edge, but

an upper limit for the coexistence of the two phases.
For D = 2 in [8] it has been found analytically that

σ′
0(E) = 2(1 − E2/4)1/4 for E < E0 where E0 = 2 = D.

I.e. in this case the value E0 corresponds exactly to the
midst of the band half-width 2D = 4. For E > E0 any
disorder transforms the delocalized states into localized
ones.

For D = 3 the value E0 = 3 = D corresponds again to
the midst of the band half-width 2D = 6. The resonance
value mentioned above Ec lies for D = 3 at Ec = 4. Be-
cause E0 < Ec, the resonance does not play a role here.
The mobility edge σ′

0(E) again follows from equation (43).
The case of the 3-D system shows an exception in the

energy range E0 < |E| < E′
0 = 3.367, where the func-

tion σ′
0(E) exhibits so-called reentrant behaviour. The

proof of this requires a special investigation (see pole dia-
grams in the Appendix).

Note that for the 3-D system in the band center
σ0(0) = 0, because the integral in equation (42) diverges.
Figure 2 presents results of a numerical solution of the
resulting equations. These results are compared to the
analytical result of [8] for the two-dimensional system
(curve 2).

4.2 Phase diagram and logarithmic divergence

Although the results for D = 3 are formally exact, they
require a special discussion. The mathematically correct
results are physically acceptable only if they are stable
against small perturbations (e.g. small changes in the
model definition, fluctuations of parameters in the model).
From this point of view two results have to be questioned:
(i) the singularity of σ′

0(E) in the band center, σ0(0) = 0,
and (ii) the non-existence of non-localized states, σ0(E) ≡
0. Point (i) arises mathematically as a consequence of the
logarithmic divergence of the integral (42) for v = 0 and
|E| → 0. Point (ii) arises again via a logarithmic diver-
gence of the integral (38) for u = u0. I.e. basically, the
case D = 3 is nothing else but a type of logarithmic devi-
ation from the high-dimensional case. Under certain con-
ditions one can find the perturbations which are capable of
regularizing the mentioned logarithmic divergence, i.e. to
transform them into a finite term. One could e.g. surmise
that in this regularization correlated disorder [31] might
play an important role. One must stress here that we are
dealing only with results for tight-binding Hamiltonians
with diagonal disorder. It is largely unclear, whether this
property remains valid also for non-diagonal disorder.

To illustrate this let us first consider a purely math-
ematical problem. Is it at all possible to confirm the re-
sults (i) and (ii) either by different numerical computa-
tions or analytical approaches? The answer is – no! Any
deviation from the exact solution (via numerical or ana-
lytical ways) automatically generates results of a mean-
field theory. A mean-field theory has a certain qualitative
agreement with the results of the exact theory, but only
for high-dimensional systems. Everything looks as if any
uncontrolled deviation from the exact theory has added

additional dimensions to a 3-D system. As a mathemat-
ical model let us further consider a 4-D system, where,
however, a coupling involving this additional dimension
is exceedingly weak (parameter κ � 1). We start from a
generalization of the function (20) for D = 3:

E(k) = E − 2
2∑

j=1

cos(kj) − 2κ cos(k3). (45)

Here the term involving κ corresponds to the hopping ma-
trix element into the fourth dimension. Figure 2 gives the
numerical results for 2 cases: κ = 0.01 (curve 3′) and
κ = 0.1 (curve 3′′). One clearly sees that all results, which
have nothing to do with the logarithmic divergence, e.g.
the entire curve σ′

0(E) with the exception of the point
E = 0, remain extremely stable. Even the change in the
parameter E0 is of the order of O(κ2).

The ‘logarithmic’ results on the other hand turn out
to be completely unstable. Even the small values of the
coupling (or regularization) parameter κ produce results
which are in qualitative agreement with those for high-
dimensional systems. The curves 3′ and 3′′ look as if
they were an extrapolation of the corresponding curves
for σ0(E) from Figure 1a. Here the inequality σ0(E) >
σ′

0(E) also applies. Reducing the parameter κ slowly
moves the mobility edge σ0(E) downwards, because the
dependence on the parameter κ is extremely week (loga-
rithmic), σ0(E) ∼ 1/ ln(κ−1). Only for even smaller val-
ues of the parameter κ � 0.01 one might perhaps see
traces of the exact results, because in this case one has
σ0(E) < σ′

0(E) for |E| < E0.

5 Conclusion

Although the formal investigation of the Anderson model
of localization (tight-binding Hamiltonian with diagonal
disorder) for higher spatial dimensions D might at first
look very abstract, the exact analytical results supply us
with clear physical consequences. The Anderson problem
of localization and the percolation problem belong to the
same class of critical phenomena: both have the same
lower and upper critical dimensions. I.e., although the
Anderson model appears to be much more complex and
richer, certain fundamental results appear to be transfer-
able. Percolation is possible for 2-D systems, this corre-
sponds to the existence of a metal-insulator transition in
disordered 2-D systems. In this sense there is no reason
to believe that the existing contradictions between the-
ory and experiment for 2-D systems point to an incom-
pleteness of the Anderson model. On the contrary, our
analytical investigation has shown that a tight-binding
Hamiltonian is presumably sufficient for this purpose.

The main problem of the theory thus does not rest in
the Hamiltonian, but rather in the interpretation of the
results, which mainly derive from numerical work. Our
analytical and exact results demonstrate the necessity of
interpreting the phase transition in the framework of first
order phase transition theory and this holds independently
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of the spatial dimension D ≥ 2. If one, however, attempts
to apply procedures which have only been developed for
systems with a second order phase transition (and this is
the general case), one does not necessarily obtain wrong
numbers, but an incomplete or even wrong interpretation.
See an example in [8], where an analytical (exact) scaling
function for the 2-D system has the same form as ob-
tained by numerical scaling. The physical interpretation
is, however totally different. We hope that the necessary
corrections of the numerical tools are possible to detect
the first order phase transition.

The rather large value of the upper critical dimen-
sion for the Anderson localization (and the percolation)
problem permits to consider 2-D and 3-D cases as low-
dimensional systems. Thus a revisiting of the results is
also necessary for 3-D systems. We have found that the
3-D case is nothing else but a type of logarithmic devi-
ation from the high-dimensional case. As a consequence
results a certain instability of the results, whose details
are discussed in the text.

We give here a short summary of the main results.

– For the Anderson localization problem there exists an
upper critical dimension D0 = 6. This value is also
characteristic of a related problem: percolation [30].
For D ≥ D0 all phase diagrams are qualitatively the
same, only the corresponding critical values develop
in a monotonic way. One can also say that this is the
property of a mean-field theory, although in this case
a mean-field theory does not exist as a closed theory.

– There exists also a second upper critical dimension
Dc = 4, which has a different meaning. The states
with non-exponential localization are formed only for
D ≥ Dc, whereas for D < Dc localized states are al-
ways exponentially localized. This second upper crit-
ical dimension Dc divides the dimensions into two
classes: high dimensions with D ≥ Dc and low dimen-
sions with D < Dc.

The results for the nontrivial spatial dimensions D > 1
can be summarized as follows.

(i) All states with energies |E| > E0 are localized at
arbitrarily weak disorder. The value of E0 depends on D
and lies inside the band E0 < 2D.

(ii) For |E| < E0 states are only localized if the disor-
der σ exceeds a critical value σ′

0(E), otherwise a two-phase
system is formed from an insulating and a metallic one.
This differs from the traditional point of view which con-
siders the localization transition as a continuous (second
order) transition. Should the standard interpretation of
this system in the framework of first-order phase transition
theory be applicable (which still has to be investigated)
one can expect that qualitatively it has similar properties
as other heterogeneous two-phase systems (e.g. the coexis-
tence of water and ice). Then percolation problems might
be important.

(iii) Exponential localization always exists for the
physically important cases D = 2, 3. Non-exponential lo-
calization occurs only for higher dimensions D ≥ Dc = 4.
In this case for |E| < E0 and σ < σ′

0(E) first the het-
erogeneous system appears, where the difference between

the two phases may be small (this has to be investigated).
For σ0(E) > σ > σ′

0(E) one finds a homogeneous system
with non-exponential localization. Only for σ > σ0(E) a
system with exponential localization appears.

(iv) σ′
0(E) is in general not an analytic function of the

energy E. There exist certain resonances.

V.N.K. gratefully acknowledges the support of the Deutsche
Forschungsgemeinschaft.

Appendix A: Pole diagrams

Parametric representation of the pole diagram

A filter hn is characterized by a pole diagram of its im-
age H(z). The principal definition equation (24), together
with the two other ones, equations (30, 33), supply us
with the parametric w-representation of the pole diagram,
equation (34). Let us rewrite this relation into the form

1
H(z)

= 1 − σ2R(w,E), (A.1)

where R(w,E) is generally a complex function of the com-
plex variable w and energy E. The main idea is quite sim-
ple. The function H(z) has its poles where

σ2R(w,E) ≡ 1. (A.2)

An elementary requirement for this is the condition on the
argument of the complex function

argR(w,E) = 0, (A.3)

because σ is positive. For the given energy value E
equation (A.3) defines one or more lines (pole lines) in
the complex w-plain. As we have already discussed in the
text, for reasons of symmetry it suffices to analyse only
a sector w = u + iv with u ≥ 0 and v ≥ 0. Let us anal-
yse one of these pole lines. For each point w on this line
the position of the pole is determined via equation (32).
The corresponding value of the disorder σ is found from
equation (A.2):

σ = R(w,E)−1/2. (A.4)

Because for each value of w on the pole line there is asso-
ciated a value of σ, it is possible to indicate by an arrow
next to the line in the diagram in which direction the poles
move with increasing disorder.

Filter H+(z)

Let us consider first the simplest case, the filter
H(z) = H+(z). Here the poles are connected with the no-
tion of the Lyapunov exponent. In the parametric repre-
sentation there exists a simple relation

w = 2 cosh(γ); (A.5)
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Fig. 3. Parametric representation of the pole diagram for an unstable filter: a) low-dimensional systems with D = 2, 3; b)
high-dimensional systems with D ≥ 4.

thus the equations (A.4), (A.5) together supply a connec-
tion between σ and γ.

For a 2-D system it is possible to analytically evaluate
the corresponding function R(w,E) [8]:

R(w,E) =
1

2
√
w2 − 4

[
1√

(w + E)2 − 4

+
1√

(w − E)2 − 4

]
, (A.6)

or

R(w,E) =
1

2
√
w2 − 4

[
1√

(w + E + 2)(w + E − 2)

+
1√

(w − E + 2)(w − E − 2)

]
. (A.7)

We clearly see that the function (A.7) possesses for the
given energy several points, where it diverges. These val-
ues w = −2−E, w = 2−E, w = E−2 and w = E+2 are
real. They are nothing else but the resonances discussed in
the text. To detect these we investigate the w-parametric
representation of the integral equation (31). Every Bessel
function J0(2t) contributes asymptotically a trigonometric
function, cos(2t − π/4). In addition there exists another
energy dependent trigonometric function, cos(Et). If we
represent all these functions via complex exponentials, we
obtain under the integral in equation (31) asymptotically
a product of the power function and a sum (with well de-
termined coefficients) of exponents exp[i(w−wj)t]. These
are the resonance values wj . In the 2-D case we have a
strong resonance (the function R(wj , E) diverges).

It is easy to establish that the function R(w,E) satis-
fies equation (A.3) for the real value of the parameter w
under the condition

w ≥ u0 = max{wj}, (A.8)

where for the 2-D system u0 = 2+|E|. I.e. here exists a line
of poles which starts from the point u0 = 2+ |E| (it corre-
sponds to the value σ = 0, because here R(u0, E)−1/2 = 0)
and moves on with increasing value of the parameter σ al-
ways along the real axis. It is also easy to find that in this

case no other pole lines exist. This result can be general-
ized for higher dimensions. So one can establish that the
value of u0 found from equation (36) corresponds precisely
to the condition equation (A.8): we always have to deal
with the same resonance.

The structure of the pole diagram is nearly identical
for all dimensions D, Figure 3. There exists only one pole
line, which originates at the point w = u0. The direction
of increasing σ is denoted by an arrow. The only difference
is that for low-dimensional systems the starting point u0

corresponds exactly to σ = 0 (this is marked in the dia-
gram with a black circle), for high-dimensional systems the
value σ0(E) = R(u0, E)−1/2 is finite (the point w = u0 is
marked with a white circle). In the latter case it is impos-
sible to find for smaller values of the disorder σ < σ0(E) a
point in the diagram, where the condition equation (A.2)
is fulfilled. The filterH+(z) possesses no poles. The border
thus found via equation (39) has been defined as mobility
edge.

Filter H−(z)

This filter has a physical interpretation only under the
condition [8] that the function H−(z) has either no poles
or that they belong to the unit circle, |z| = 1. In the
parametric w-representation the unit circle (in the sector
w = u + iv with u ≥ 0, v ≥ 0) corresponds to an interval
on the real axis u ∈ [0, 2]. I.e. it is necessary first to find
the single points or even lines in this interval u ∈ [0, 2],
where the condition equation (A.3) holds. Later on one
must also find out, in which way the pole line leaves this
interval.

It is easy to ascertain that one of the possible pole lines
always lies on the imaginary axis v, and in the interval v ≥
0. On this line (trivial pole line) only the point v = 0 could
have a physical interpretation, because the point, w = 0,
also belongs to the unit circle. The existence of other pole
lines strongly depends on the space dimension D and the
energy E.

As the simplest example let us first consider the filter
for the 2-D system [8], where the corresponding function
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Fig. 4. Parametric representation of the pole diagram for a 2-D system: a) energy range 0 ≤ |E| < 2; b) energy range
2 < |E| < 4.

has an analytical form:

R(w,E) =
1

2
√

4 − w2

×
[

1√
4 − (w + E)2

+
1√

4 − (w − E)2

]
. (A.9)

Because the interval u ∈ [0, 2] plays an important role
for the physical interpretation, we consider first the res-
onance values {wj}, which lie precisely in this region. It
is easy to calculate that for each energy value only one
resonance w = u0 exists. For energies 0 ≤ |E| < 2 we have
u0 = 2 − |E|. In the remaining energy region, 2 < |E| < 4,
one has u0 = |E| − 2. In the 2-D system the resonances
are so strong (the function R(w,E) diverges at w = u0)
that these determine in a unique manner the beginning of
the new pole lines and their direction, Figure 4.

In the interval 0 ≤ |E| < 2 the pole line starts exactly
at the point u0 = 2 − |E|. This point corresponds to the
value of the disorder σ = 0 and is denoted by a black
circle in the diagram. With increasing value of σ the pole
line follows exactly the real axis u, until it reaches the
point u = 0 (w = 0). At this point the corresponding
disorder R(0, E)−1/2 is finite (white circle in the figure),
and we have denoted this in equation (43) as σ′

0(E). Be-
cause this line is always a unit circle (marginal stability),
we have physical solutions. These exist only under the
condition that 0 ≤ σ < σ′

0(E). If the disorder crosses
the border σ′

0(E), the pole line leaves the point w = 0
and follows further the trivial pole line (imaginary axis).
Here, however, a physical interpretation is no longer pos-
sible and consequently there are no extended states in the
range σ > σ′

0(E).
In the interval 2 < |E| < 4 the behaviour of the pole

line determines the resonance at w = u0 = |E| − 2. This
line again starts at the value u0, which corresponds to the
disorder σ = 0 (black circle in the figure). Then this line
leaves the real axis and takes its course into the complex
plain until it reaches a particular point v0 (bifurcation
point) on the imaginary axis v. The later path makes use
of branches of trivial pole lines. The directions belonging
thereto are again marked with an arrow. Thus we have for
σ > 0 no points in the phase diagram which can be in-
terpreted physically. I.e. an infinitesimal disorder already

suffices in this energy range to destroy all extended states.
One may also write that in this range σ′

0(E) ≡ 0.
Formally between the 3-D case (low-dimensional sys-

tem) and the cases D ≥ 4 (high-dimensional systems)
there is a quantitative difference. For high-dimensional
systems one does not find a divergence of the func-
tion R(w,E) at the resonance w = u0, but only a jump in
the argument of this complex function. For the 3-D system
this divergence exists, on the other hand, but in contrast
to the 2-D system the resonance is very weak (logarithmic
divergence). In all these cases the resonances have no di-
rect influence: they do not generate a pole line emerging
from the point u0. There is, however, an indirect influ-
ence of the resonances, because every resonance defines
the argument of the function R(w,E).

In Figure 5, different types of pole diagrams are pre-
sented. Figure 5a is typical for small values of the energy.
Although the resonance at w = u0 exists (this point is
marked in the figure with a black square), the weak res-
onance does not generate a new pole line. There remains
only the trivial pole line, where only the point w = 0
has physical significance. The value R(0, E)−1/2 defines
again the function σ′

0(E) already mentioned. Physical so-
lutions exist only for σ < σ′

0(E) (no poles on the unit cir-
cle). Figure 5b is typical for large values of the energy. In
the parametric representation of the filter function, equa-
tion (34), one can in addition see a point, where the func-
tion R(w,E) diverges. This is the point w = 2 (a type of
energy independent resonance, which corresponds to the
factor

√
4 − w2). One can see that this point takes over the

role of the resonance at u0. The pole line starts from the
point w = 2 (this point corresponds to the value σ = 0
and is therefore again marked with a black circle). The
continuation is similar to Figure 4b: the line continues to
the imaginary axis and reaches it at the point v = v0.
Although the points w = u0 and w = 2 are not identical,
Figures 4b and 5b are qualitatively similar, and they have
the same physical interpretation. In this range of the en-
ergy an infinitesimal disorder destroys all extended states.

An indirect influence by the resonances consists in the
fact that one can change in their neighbourhood the ar-
gument of the complex function R(w,E) in such a way
that the condition equation (A.3) becomes valid at a point
w = u′, see Figures 5c and 5d. The point u′ is not a
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Fig. 5. Different types of pole diagrams for the systems with spatial dimensions D ≥ 3. For details see the text.

resonance, here the function R(u′, E) remains finite (white
circle in the pole diagram).

Let us consider further on two examples. In the 3-D
case one can divide the energy values into three ranges. In
the range 0 ≤ |E| < 2 the resonance is found at u0 = |E|,
which, however, has no importance. We have the pole dia-
gram of Figure 5a. In the range 2 ≤ |E| < 4 the resonance
occurs at u0 = 4 − |E|. Here the above mentioned point
u′ arises, but under the condition |E| > E0 = 3.00. I.e.
in the range 2 ≤ |E| < E0 the pole diagram of Figure 5a
remains valid. In the range E0 < |E| < 4 we find a differ-
ent typ of diagram, Figure 5c. The point u′ corresponds to
the condition 0 ≤ u′ < u0. For E → 4 the point u′ moves
towards the value u′ = 0, and thus arises the bridge be-
tween the new pole line and the trivial pole line. After
this the diagram is qualitatively the same as Figure 5b:
there are no extended states. This is also valid in the range
4 < |E| < 6, where u0 = |E| − 4.

Figure 5c describes a complicated case which does not
have an unambiguous interpretation. Formally this is the
only diagram which has two pole lines. The other ones
consisted always of a single pole line, although bifurcation
points were also possible. For infinitesimally small disor-
der the resonance at w = 2 is important, as in the diagram
of Figure 5b. Here with increasing disorder σ, the pole line
which starts at the point w = 2 (black circle), leaves the
interval u ∈ [0, 2]. The corresponding poles have no phys-
ical interpretation, which corresponds to the annihilation
of extended states via infinitesimal disorder. If the disorder
increases further this pole line approaches again the inter-
val u ∈ [0, 2], and reaches it at the point u′ (Fig. 5c). The
corresponding value of the disorder σ1 = R(u′, E)−1/2 is
finite (white circle). The physical interpretation now de-
pends to which value of the disorder σ2 = R(0, E)−1/2

corresponds the point w = 0 (white circle) on the trivial
pole line.

If σ1 < σ2, then a sort of gap arises in the disorder in
such a manner that in the range σ1 < σ < σ2 no values of
the parameter w correspond to the pole line. I.e. the fil-
ter H(z) has no poles in this range. Consequently a phys-
ical interpretation of the solution is possible here and we
obtain the reappearance of extended states at finite disor-
der values in this special interval. This condition, σ1 < σ2,
is valid for 3-D systems only in a very narrow range of the
energy, E0 < |E| < E′

0, where E′
0 = 3.367. The behaviour

of the curve σ′
0(E) is shown in Figure 2 (so-called reentrant

behaviour). We can clearly see that to each energy value
in the range E0 < |E| < E′

0 are associated three values
of σ′

0(E); these are in particular σ′
0(E) = 0 – localization

via infinitesimal disorder, σ′
0(E) = σ1 – reappearance of

extended states, and σ′
0(E) = σ2 – again localization.

Outside this range, E′
0 < |E| < 4, one has σ1 > σ2. For

this condition there are no points on the pole line which
permit a physical interpretation. I.e. after this annihila-
tion of extended states via infinitesimal disorder it is not
possible for extended states to reappear.

In the 4-D case we find a different sequence of reso-
nances. In the range 0 ≤ |E| < 2 the resonance occurs at
u0 = 2 − |E|, and the diagram Figure 5a is valid. In the
range 2 < |E| < 4 the resonance is found at u0 = |E| − 2.
Here the point u′ (u0 > u′ ≥ 2) arises. The pole diagram
corresponds to 5d. The pole line starts from a white circle,
which corresponds to the value σ′

0(E) > 0. Only this point
in the pole diagram has a physical interpretation, and it
means the existence of extended states under the condi-
tion of small values of the disorder parameter, σ < σ′

0(E).
For E → 4 the values u′ and u0 move towards w = 2. Be-
cause always u′ > u0, this means that the point u′ reaches
the value w = 2 before the point u0, and this occurs for
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E0 = 3.915 < 4. For E > E0 the diagram 5b is still valid,
although the series of resonances is not yet exhausted: a
resonance arises at u0 = 6 − |E| for 4 < |E| < 6, and
another one at u0 = |E| − 6 for 6 < |E| < 8. Here also
extended states are not possible.
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